Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474129

RESUMO

Li3V2(PO4)3 cathodes for Li-ion batteries (LIBs) were synthesized using a hydrothermal method with the subsequent annealing in an argon atmosphere to achieve optimal properties. The X-ray diffraction analysis confirmed the material's single-phase nature, while the scanning electron microscopy revealed a granular structure, indicating a uniform particle size distribution, beneficial for electrochemical performance. Magnetometry and electron spin resonance studies were conducted to investigate the magnetic properties, confirming the presence of the relatively low concentration and highly uniform distribution of tetravalent vanadium ions (V4+), which indicated low lithium deficiency values in the original structure and a high degree of magnetic homogeneity in the sample, an essential factor for consistent electrochemical behavior. For this pure phase Li3V2(PO4)3 sample, devoid of any impurities such as carbon or salts, extensive electrochemical property testing was performed. These tests resulted in the experimental discovery of a remarkably high lithium diffusion coefficient D = 1.07 × 10-10 cm2/s, indicating excellent ionic conductivity, and demonstrated impressive stability of the material with sustained performance over 1000 charge-discharge cycles. Additionally, relithiated Li3V2(PO4)3 (after multiple electrochemical cycling) samples were investigated using scanning electron microscopy, magnetometry and electron spin resonance methods to determine the extent of degradation. The combination of high lithium diffusion coefficients, a low degradation rate and remarkable cycling stability positions this Li3V2(PO4)3 material as a promising candidate for advanced energy storage applications.


Assuntos
Lítio , Argônio , Condutividade Elétrica , Eletrodos , Íons
2.
J Liposome Res ; 34(1): 18-30, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37144381

RESUMO

Small biospecific peptides with defined chemical structure and cellular responses are promising alternatives to full-length therapeutic proteins. Identification of these peptides solely or in combination with other bioactive factors and determination of their targets are of substantial interest in current drug delivery research. This study is aimed at the development of new liposomal formulations of ECM-derived GHK peptide known for its multiple regeneration-related activities but poorly recognized cellular targets. In situ association of membranotropic GHK derivative with unilamellar liposomes was performed to prepare GHK-modified liposomes with defined properties. According to DLS, the GHK component on the liposomal surface interacted with heparin in a specific manner compared to other polysaccharides and RGD counterpart, whereas ITC analysis of such interactions was complicated. The results provide a useful tool for screening of bio-interactions of synthetic peptide-presenting liposomes by the DLS technique. They were also employed to produce a multi-functional nanosized GHK-heparin covering for liposomes. The resulting composite liposomes possessed low size dispersity, increased anionic charge, and mechanical rigidity. The heparin component significantly promoted the accumulation of GHK-modified liposomes in 3T3 fibroblasts so that the composite liposomes exhibited the highest cell-penetrating activity. Furthermore, the latter formulation stimulated cell proliferation and strongly inhibited ROS production and GSH depletion under oxidative stress conditions. Together, the results support that cell-surface glycosaminoglycans can be involved in GHK-mediated liposomal delivery, which can be further greatly enhanced by association with heparin. The composite liposomes with GHK-heparin covering can be considered as an advanced GHK-based formulation for therapeutic and cosmeceutical applications.


Assuntos
Heparina , Lipossomos , Lipossomos/química , Peptídeos/química , Sistemas de Liberação de Medicamentos , Lipossomas Unilamelares , Proliferação de Células
3.
Sensors (Basel) ; 23(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37837072

RESUMO

An electrochemically active polymer, polythionine (PTN), was synthesized in natural deep eutectic solvent (NADES) via multiple potential scans and characterized using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). NADES consists of citric acid monohydrate, glucose, and water mixed in the molar ratio of 1:1:6. Electrodeposited PTN film was then applied for the electrostatic accumulation of DNA from salmon sperm and used for the sensitive detection of the anticancer drug epirubicin. Its reaction with DNA resulted in regular changes in the EIS parameters that made it possible to determine 1.0-100 µM of epirubicin with the limit of detection (LOD) of 0.3 µM. The DNA sensor developed was successfully applied for the detection of epirubicin in spiked samples of artificial and natural urine and saliva, with recovery ranging from 90 to 109%. The protocol of the DNA sensor assembling utilized only one drop of reactants and was performed with a minimal number of steps. Together with a simple measurement protocol requiring 100 µL of the sample, this offers good opportunities for the further use of the DNA sensor in monitoring the drug level in biological samples, which is necessary in oncology treatment and for the pharmacokinetics studies of new antitumor drugs.


Assuntos
Solventes Eutéticos Profundos , Sêmen , Masculino , Humanos , Epirubicina , Solventes/química , DNA , Técnicas Eletroquímicas/métodos , Eletrodos
4.
Sensors (Basel) ; 23(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37430675

RESUMO

The assembling of thiacalix[4]arene-based dendrimers in cone, partial cone, and 1,3-alternate configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Native and damaged DNA were electrostatically accumulated on the modifier layer. The influence of the charge of the redox indicator and of the macrocycle/DNA ratio was quantified and the roles of the electrostatic interactions and of the diffusional transfer of the redox indicator to the electrode interface indicator access were established. The developed DNA sensors were tested on discrimination of native, thermally denatured, and chemically damaged DNA and on the determination of doxorubicin as the model intercalator. The limit of detection of doxorubicin established for the biosensor based on multi-walled carbon nanotubes was equal to 1.0 pM with recovery from spiked human serum of 105-120%. After further optimization of the assembling directed towards the stabilization of the signal, the developed DNA sensors can find application in the preliminary screening of antitumor drugs and thermal damage of DNA. They can also be applied for testing potential drug/DNA nanocontainers as future delivery systems.


Assuntos
Dendrímeros , Nanoestruturas , Nanotubos de Carbono , Humanos , DNA , Doxorrubicina
5.
Biosensors (Basel) ; 13(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37232875

RESUMO

Electrochemical DNA sensors are highly demanded for fast and reliable determination of antitumor drugs and chemotherapy monitoring. In this work, an impedimetric DNA sensor has been developed on the base of a phenylamino derivative of phenothiazine (PhTz). A glassy carbon electrode was covered with electrodeposited product of PhTz oxidation obtained through multiple scans of the potential. The addition of thiacalix[4]arene derivatives bearing four terminal carboxylic groups in the substituents of the lower rim improved the conditions of electropolymerization and affected the performance of the electrochemical sensor depending on the configuration of the macrocyclic core and molar ratio with PhTz molecules in the reaction medium. Following that, the deposition of DNA by physical adsorption was confirmed by atomic force microscopy and electrochemical impedance spectroscopy. The redox properties of the surface layer obtained changed the electron transfer resistance in the presence of doxorubicin due to its intercalating DNA helix and influencing charge distribution on the electrode interface. This made it possible to determine 3 pM-1 nM doxorubicin in 20 min incubation (limit of detection 1.0 pM). The DNA sensor developed was tested on a bovine serum protein solution, Ringer-Locke's solution mimicking plasma electrolytes and commercial medication (doxorubicin-LANS) and showed a satisfactory recovery rate of 90-105%. The sensor could find applications in pharmacy and medical diagnostics for the assessment of drugs able to specifically bind to DNA.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Doxorrubicina , Carbono/química , Oxirredução , DNA/química , Eletrodos , Técnicas Eletroquímicas/métodos
6.
J Fungi (Basel) ; 8(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36012780

RESUMO

Lichens often grow in microhabitats where they experience severe abiotic stresses. Some species respond to high UV radiation by synthesizing dark brown melanic pigments in the upper cortex. However, unlike the melanized structures of non-lichenized fungi, the morphology of the melanic layer in lichens remains unstudied. Here, we analyzed the morphology, ultrastructure, and elemental composition of the melanized layer in UV-exposed thalli of the lichen Lobaria pulmonaria (L.) Hoffm. Using light microscopy, we detected a pigmented layer sensitive to staining with 3,4-L-dihydroxyphenylalanine, a precursor of eumelanin, in the upper cortex of melanized thalli. Analysis of cross-sections of melanized thalli using scanning electron microscopy revealed that melanin-like granules are deposited into the hyphal lumens. Melanized thalli also possessed thicker hyphal cell walls compared to pale thalli. Energy-dispersive X-ray spectroscopy analysis of the elemental composition of the hyphal walls and extracted melanin indicated that the type of melanin synthesized by L. pulmonaria is eumelanin. Transmission electron microscopy was used to show that during melanization melanosome-like dark vesicles are transported to the cell surface and secreted into the cell walls of the fungal hyphae. Results from this study provide new insights into the effects of melanin synthesis on the microstructure of lichen thalli.

7.
Biosensors (Basel) ; 12(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35624630

RESUMO

The detection of small molecules interacting with DNA is important for the assessment of potential hazards related to the application of rather toxic antitumor drugs, and for distinguishing the factors related to thermal and oxidative DNA damage. In this work, a novel electrochemical DNA sensor has been proposed for the determination of antitumor drugs. For DNA sensor assembling, a glassy carbon electrode was modified with carbon black dispersed in DMF. After that, pillar [5]arene was adsorbed and Methylene blue and Neutral red were consecutively electropolymerized onto the carbon black layer. To increase sensitivity of intercalator detection, DNA was first mixed with water-soluble thiacalixarene bearing quaternary ammonium groups in the substituents at the lower rim. The deposition of the mixture on the electropolymerized dyes made it possible to detect doxorubicin as model intercalator by suppression of the redox activity of the polymerization products. The DNA sensor made it possible to determine 0.5 pM-1.0 nM doxorubicin (limit of detection 0.13 pM) with 20 min of incubation. The DNA sensor was successfully tested on spiked samples of human plasma and doxorubicin medication.


Assuntos
Azul de Metileno , Fuligem , DNA/química , Doxorrubicina , Humanos , Substâncias Intercalantes , Vermelho Neutro , Poli A
8.
Sensors (Basel) ; 21(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34833839

RESUMO

Electrochemical DNA sensors offer unique opportunities for the sensitive detection of specific DNA interactions. In this work, a voltametric DNA sensor is proposed on the base of glassy carbon electrode modified with carbon black, adsorbed acridine yellow and DNA for highly sensitive determination of doxorubicin antitumor drug. The signal recorded by cyclic voltammetry was attributed to irreversible oxidation of the dye. Its value was altered by aggregation of the hydrophobic dye molecules on the carbon black particles. DNA molecules promote disaggregation of the dye and increased the signal. This effect was partially suppressed by doxorubicin compensate for the charge of DNA in the intercalation. Sensitivity of the signal toward DNA and doxorubicin was additionally increased by treatment of the layer with dimethylformamide. In optimal conditions, the linear range of doxorubicin concentrations determined was 0.1 pM-1.0 nM, and the detection limit was 0.07 pM. No influence of sulfonamide medicines and plasma electrolytes on the doxorubicin determination was shown. The DNA sensor was tested on two medications (doxorubicin-TEVA and doxorubicin-LANS) and showed recoveries of 102-105%. The DNA sensor developed can find applications in the determination of drug residues in blood and for the pharmacokinetics studies.


Assuntos
Carbono , Técnicas Eletroquímicas , Aminoacridinas , DNA , Eletrodos
9.
Biotechnol Rep (Amst) ; 30: e00616, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33996522

RESUMO

Cell-free therapies based on extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are considered as a promising tool for stimulating regeneration and immunomodulation. The need to develop a practical approach for large-scale production of vesicles with homogenous content led to the implementation of cytochalasin B-induced to induce microvesicles (CIMVs) biogenesis. CIMVs mimic natural EVs in size and composition of the surrounding cytoplasmic membrane. Previously we observed that MSC derived CIMVs demonstrate the same therapeutic angiogenic and immunomodulatory activity as the parental MSCs, making them a potentially scalable cell-free therapeutic option. However, little is known about their storage stability and delivery potential. We determined that different storage conditions alter the protein concentration within the solution used to store CIMVs over time, this concided with a decrease in the amount of CIMVs due to gradual degradation. We established that freezing and storage CIMVs in saline at -20 °C reduces degredation and prolongs their shelf life. Additionally, we found that freeze-thawing preserved the CIMVs morphology better than freeze drying and subsequent rehydration which resulted in aggregation of CIMVs. Collectively our data demonstrates for the first time, that the most optimal method of CIMVs storage is freezing at -20 °C, to preserve the CIMVs in the maximum quantity and quality with retention of effective delivery. These findings will benefit the formation of standardized protocols for the use of CIMVs for both basic research and clinical application.

10.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839389

RESUMO

The determination of antibiotics in food is important due to their negative effect on human health related to antimicrobial resistance problem, renal toxicity, and allergic effects. We propose an impedimetric aptasensor for the determination of kanamycin A (KANA), which was assembled on the glassy carbon electrode by the deposition of carbon black in a chitosan matrix followed by carbodiimide binding of aminated aptamer mixed with oligolactide derivative of thiacalix[4]arene in a cone configuration. The assembling was monitored by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. In the presence of the KANA, the charge transfer resistance of the inner interface surprisingly decreased with the analyte concentration within 0.7 and 50 nM (limit of detection 0.3 nM). This was attributed to the partial shielding of the negative charge of the aptamer and of its support, a highly porous 3D structure of the surface layer caused by a macrocyclic core of the carrier. The use of electrostatic assembling in the presence of cationic polyelectrolyte decreased tenfold the detectable concentration of KANA. The aptasensor was successfully tested in the determination of KANA in spiked milk and yogurt with recoveries within 95% and 115%.

11.
Nanoscale ; 12(25): 13757-13770, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32573587

RESUMO

New lipid-based nanomaterials and multi-target directed ligands (MTDLs) based on sterically hindered phenol, containing a quaternary ammonium moiety (SHP-s-R, with s = 2,3) of varying hydrophobicity (R = CH2Ph and CnH2n+1, with n = 8, 10, 12, 16), have been prepared as potential drugs against Alzheimer's disease (AD). SHP-s-R are inhibitors of human cholinesterases with antioxidant properties. The inhibitory potency of SHP-s-R and selectivity ratio of cholinesterase inhibition were found to significantly depend on the length of the methylene spacer (s) and alkyl chain length. The compound SHP-2-16 showed the best IC50 for human AChE and the highest selectivity, being 30-fold more potent than for human BChE. Molecular modeling of SHP-2-16 binding to human AChE suggests that this compound is a dual binding site inhibitor that interacts with both the peripheral anionic site and catalytic active site. The relationship between self-assembly parameters (CMC, solubilization capacity, aggregation number), antioxidant activity and a toxicological parameter (hemolytic action on human red blood cells) was investigated. Two sterically hindered phenols (SHP-2-Bn and SHP-2-R) were loaded into L-α-phosphatidylcholine (PC) nanoparticles by varying the SHP alkyl chain length. For the brain AChE inhibition assay, PC/SHP-2-Bn/SHP-2-16 nanoparticles were administered to rats intranasally at a dose of 8 mg kg-1. The Morris water maze experiment showed that scopolamine-induced AD-like dementia in rats treated with PC/SHP-2-Bn/SHP-2-16 nanoparticles was significantly reduced. This is the first example of cationic SHP-phospholipid nanoparticles for inhibition of brain cholinesterases realized by the use of intranasal administration. This route has promising potential for the treatment of AD.


Assuntos
Doença de Alzheimer , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Animais , Inibidores da Colinesterase/farmacologia , Lipídeos/uso terapêutico , Fenol/uso terapêutico , Fenóis , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...